MINOS and MINOS+
Selected topics

Karol Lang
The University of Texas at Austin
For the MINOS Collaboration

Outline:
- Latest oscillations results
- Search for sterile neutrinos
- Search for more exotic transitions
MINOS and NuMI

Main Injector Neutrino Oscillation Search

NuMI beam

- High intensity, flexible beam
 - 3.5×10^{13} protons/pulse (~320 kW, 120 GeV beam)
 - two magnetic horns
 - movable target (adjustable energy spectrum)
 - Proton Improvement Plan (PIP) underway (700 kW)
 - 2.2sec. \rightarrow 1.7sec. \rightarrow 1.33sec. cycle time

- Two functionally similar magnetized detectors
 - Far Detector in operation since 2003
 - NuMI and Near Detector since 2005

- Medium energy beam since 2013 for off-axis NOvA
NuMI Medium Energy beam setting

- Medium Energy (ME) beam setting (new) for NOvA
 - New target, new horn 1
 - Horn 2 → 10m downstream
 - With PIP: 6×10^{20} POT/year

Old target

New target

Simulated Enhanced $\bar{\nu}$ Beam
5.4 kton, 6×10^{20} POT

- ME on-axis
- LE on-axis

14 mrad off-axis

CC Events / GeV

E_ν (GeV)
MINOS Detectors

Near Detector
(1 kton, 1km from source)

Far Detector
(5.4 kton, 735 km from source)

- Scintillator Strips w/ WLS fibers
- Multi-anode PMT’s
- Charged current ν_μ events
- Neutral current events
- Charged current ν_τ events

ν_e CC Event
MINOS Detectors: long-term view

- Detectors mature as expected
- Operate with sustained stability
- > 95% live-time

Light yield (relative)

-3% / year

MINOS+ Era

MINOS Preliminary

Near Detector Data

MINOS+ Preliminary

- 4th Sep - 30th Sep (2013)
- 1st Nov - 30th Nov (2013)
- 1st Dec - 31st Dec (2013)
- 1st Jan - 31st Jan (2014)
- 1st Feb - 28th Feb (2014)
- 1st Mar - 31st Mar (2014)
- 1st Apr - 24th Apr (2014)

Reconstructed neutrino energy (GeV)
Published results on Δm^2_{32}, θ_{23}, θ_{13}:

- ν_μ disappearance (PRL 110, 251801, 2013)
- $\nu_\mu \rightarrow \nu_e$ appearance (PRL 110, 171801, 2013)
- Combined analysis (PRL 112, 191801, 2014)
MINOS & MINOS+ (atm.) combined analysis results
Disappearance and appearance, beam and atmospheric data

Preliminary

MINOS+ addition for these results:
10.79 kt*yrs of atmospheric data

Inverted Hierarchy

\[
|\Delta m_{32}^2| = 2.37^{+0.11}_{-0.07} \times 10^{-3} \text{eV}^2
\]

\[
\sin^2 \theta_{23} = 0.43^{+0.19}_{-0.05}
\]

0.36 < \sin^2 \theta_{23} < 0.65 (90% C.L.)

Normal Hierarchy

\[
|\Delta m_{32}^2| = 2.34^{+0.09}_{-0.09} \times 10^{-3} \text{eV}^2
\]

\[
\sin^2 \theta_{23} = 0.43^{+0.16}_{-0.04}
\]

0.37 < \sin^2 \theta_{23} < 0.64 (90% C.L.)
MINOS & NOvA

Projections for combining results

Published MINOS data

NOvA 2.5×10^{20} POT

MINOS & NOvA

MINOS DATA

MINOS: All atmospheric and beam data

Normal hierarchy

Inverted hierarchy

68% C.L. 90% C.L.

NOvA SIMULATION

NOvA: 2.5×10^{20} POT ν_e-mode

Normal hierarchy

Inverted hierarchy

68% C.L. 90% C.L.

MINOS DATA & NOvA SIMULATION

MINOS: All atmospheric and beam data

NOvA: 2.5×10^{20} POT ν_e-mode

Normal hierarchy

Inverted hierarchy

68% C.L. 90% C.L.
MINOS & MINOS+ & NOvA (end 2016)

Have: 3.0 x 10^{20} POT in 2013-2014
Assume: + 2.3 x 10^{20} POT in 2014-2015
Assume: + 4.7 x 10^{20} POT in 2015-2016
Total: 10.0 x 10^{20} POT by end of 2016

Published MINOS data & MINOS+ 10 x 10^{20} POT

NOvA 7.2 x 10^{20} POT

MINOS & MINOS+ & NOvA
MINOS+ data

- MINOS: 10.56×10^{20} in the Low E_ν mode
- MINOS+: 3.0×10^{20} in the Medium E_ν mode (here 1.68×10^{20})
- No beam oscillations results from MINOS+ yet

| | $\mu^- | \mu^+$ |
|----------------|----------|
| Unoscillated Prediction | 1254.8 | 52.03 |
| Oscillated Prediction | 1085.2 | 47.09 |
| Data | 1037 | 48 |

K. Lang, U. of Texas at Austin, MINOS & MINOS+, NNN 2014, APC Paris, Nov 4-6, 2014
MINOS & MINOS+ data

- MINOS: 10.56×10^{20} in the Low E_ν mode
- MINOS+: 3.0×10^{20} in the Medium E_ν mode (here 1.68×10^{20})
- No beam oscillations results from MINOS+ yet
Sterile analysis: NC + CC event spectra

- Energy spectra at the Far Detector for ν_μ events
- Observed (black crosses) vs predicted assuming no sterile neutrinos (red)

Far Detector stats (0-40 GeV):
- 2563 ν_μ CC events
- 1211 NC events

Equation:

$$R = \frac{N_{data} - \sum Backgrounds}{Signal_{Pred NC}}$$

- $R = 1.08 \pm 0.11$ (0 - 40 GeV)
- $R = 1.11 \pm 0.10$ (0 - 3 GeV)
MINOS ratios of FD/ND energy spectra

- Ratios of energy spectra at the Far Detector to Near Detector using ν_μ events.
- Observed (black crosses) vs predicted assuming no sterile neutrinos (red)

- Fit the observed FD/ND ratios for CC and NC
- Use $|\Delta m^2_{43}|$, $|\Delta m^2_{32}|$, θ_{23}, θ_{24}, θ_{34} and fix other parameters
- Systematics with the covariance matrix
- CLs use Feldman-Cousins recipe

[Images of graphs showing CC and NC ratios with relevant parameters]
Sterile neutrino analysis assumptions

- The MINOS disappearance data in the 3 + 1 model:
 - 3 active flavours (ν_e, ν_μ, ν_τ)
 - Add 1 sterile flavour (ν_S)
 - Add 1 extra mass state (ν_4)

 $\Rightarrow 4 \times 4$ neutrino mixing matrix

- Neutrino mixing parameters:
 - Standard 3-flavour parameters:
 - $\Delta m^2_{32}, \Delta m^2_{21}$
 - $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{13}$
 - Additional 4-flavour parameters
 - Δm^2_{43}
 - $\theta_{14}, \theta_{24}, \theta_{34}, \delta_{14}, \delta_{24}$
MINOS constraints on sterile neutrinos from the disappearance data

- Fit to the disappearance of NC and ν_μ CC energy spectra

- Strongest constraints on $\nu_\mu \rightarrow \nu_s$ disappearance for $\Delta m^2_{43} < 1 \text{ eV}^2$
MINOS & Bugey

- Use best fit to NC and ν_μ CC MINOS disappearance
- Combine MINOS with the ν_e disappearance by the Bugey reactor disappearance data
 - MINOS: 90% C.L. on θ_{24}
 - Bugey: 90% C.L. on θ_{14}
 - Construct combined limit on

\[\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \sin^2 2\theta_{24} \]

* Bugey limits computed by P. Huber using GLoBES 2012 and new reactor fluxes.

- These results rule out much of $\Delta m^2_{43} < 1$ eV2 for sterile neutrinos

- Combined limits can be compared to MiniBooNE, LSND, ICARUS, and OPERA results

- Collaborating with Daya Bay to use their results
Future prospects: MINOS+ & MINOS sensitivity to sterile neutrinos

- Sensitivity after two years of MINOS+ data (red)
- Compared with the sensitivity of MINOS running (pink).
- The red line includes the MINOS running.
- This is entirely MC simulation (including the MINOS part)

MINOS+ Preliminary

ν_μ mode

MINOS simulation: 10.56×10^{20} POT
MINOS+ simulation: 5.32×10^{20} POT
Full MINOS systematics

- CDHS 90% CL
- CCFR 90% CL
- MiniBooNE 90% CL
- MiniBooNE+SciBooNE 90% CL
- MINOS 90% CL
- MINOS+ 90% CL
Non-Standard Interactions (NSI)

- Non-Standard Interactions (NSI) – generic extension beyond the MSW effect

\[H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{31}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U_{PMNS}^\dagger + \sqrt{2}G_F n_e \begin{bmatrix} 1 + \epsilon_e \epsilon_{e\mu} \epsilon_{e\tau} \\ \epsilon_{e\mu} \epsilon_{\mu\mu} \epsilon_{\mu\tau} \\ \epsilon_{e\tau} \epsilon_{\mu\tau} \epsilon_{\tau\tau} \end{bmatrix} \]

- MINOS data can be used to constrain some of the parameters

 \(\epsilon_{\mu\tau} \) sensitivity is from the \(\nu_\mu \text{CC} \) disappearance

 \(\epsilon_{e\tau} \) sensitivity is from the \(\nu_e \text{CC} \) appearance
MINOS NSI results

Neutrino 2014

- $\epsilon_{\mu\tau}$ results in:
 - Presented at Neutrino 2014 in Boston
 - Follows:
 - Friedland, Lunardini, Maltoni
 PRD 70, 111301 (2004)
 - Coelho, Kafka, Mann, Schneps, Altinok
 PRD 86, 113015 (2012)

- $\epsilon_{e\tau}$ study is the first MINOS only analysis for this parameter

K. Lang, U. of Texas at Austin, MINOS & MINOS+, NNN 2014, APC Paris, Nov 4-6, 2014
Large Extra Dimensions (LED)

- Proposed by Arkani-Hamed et al. for gauge hierarchy problem
- Used on neutrinos to explain their small masses
 - left-handed neutrinos are confined to a 4 dimensional subspace
 - right-handed neutrino can propagate in more than 4 dimensions
- Assumptions:
 - one extra dimension is much larger than others
 - perturbations to standard oscillation
- Oscillation amplitude among active neutrino states ν_e, ν_μ, ν_τ

$$A(\nu_\alpha \rightarrow \nu_\beta) = \sum_{i,j,k=1}^{3} \sum_{n=0}^{+\infty} U_{\alpha i} U^*_{\beta k} W_{ij}^{(0n)*} W_{ki}^{(0n)} e^{i\frac{(\lambda^{(n)}_j/a)^2}{2E}}$$

- U, W are mixing matrices for active and Kaluza-Klein states
- $\frac{\lambda^{(n)}_j}{a}$ is the neutrino mass

- Model parameters (Machado et al.):
 - smallest mass m_0
 - extra dimension size a
We only focus on beam disappearance

Based on a specific model, for smallest neutrino mass $m_0 \rightarrow 0$
 - MINOS is sensitive to extra dimensions down to about 0.55 μm
 - MINOS+ will bring down the limit further to about 0.4 μm

Challenge:
 - Deal with possible ND oscillations
 - Proceed to “box opening”
Examples of other MINOS physics:
QE in ND and CR in FD

$$M_A = 1.23^{+0.13}_{-0.09} (\text{fit})^{+0.12}_{-0.15} (\text{syst.}) \text{ GeV}$$

- "Comparisons of annual modulations in MINOS with the event rate modulation in CoGeNT"

Summary

- New analyses of MINOS data continue improving constraints on oscillations
 - Results of a 3-flavor combined disappearance and appearance analysis
- MINOS+ will significantly impact future results
- New bounds on sterile neutrinos
 - Combine with reactors experiments
- More exotic searches under way
 - Non-standard interactions
 - Large extra dimensions
- NuMI – the most powerful ν beam will help to make more strides
Protons-on-target (POT) history of NuMI

7 years, 7 targets, 2 horns

15.6\times10^{20} \text{ POT}

Atmospheric 48.67 kt year (since 2003)

May 1 2005 to April 30 2012

\nu \quad 10.71\times10^{20}

\text{anti-}\nu \quad 3.36\times10^{20}

Special runs

Total Protons on Target (x \times 10^{20})

NOvA era

MINOS+

New target

Horn 1
MINOS & MINOS+ & NOvA (end 2015)

Have: 3.0×10^{20} POT in 2013-2014
Assume $+ 2.3 \times 10^{20}$ POT in 2014-2015 End of PIP
Assume $+ 4.7 \times 10^{20}$ POT in 2015-2016 $\Rightarrow 700$ kW
Total 10.0×10^{20} POT by end of 2016

Published MINOS data & MINOS+ 5.3×10^{20} POT

NOvA 2.5×10^{20} POT

MINOS & MINOS+ & NOvA

-2Δ\log(L) vs |Δm_{32}^2| (10^{-3} \text{ eV}^2)
-2Δ\log(L) vs \sin^2θ_{23}

MINOS ν_μ disappearance + ν_ν appearance
10.71 \times 10^{20} \text{ POT } ν_μ-dominated beam
3.36 \times 10^{20} \text{ POT } ν_μ-enhanced beam
37.88 \text{ kt-yr atmospheric neutrinos}

Profile of likelihood surface
- Normal hierarchy
- Inverted hierarchy

90\% C.L.
68\% C.L.

Best fit
- 68\% C.L.
- 90\% C.L.
MINOS disappearance data set
(atmospheric data include MINOS+ data taken 2011-2014)

MINOS PRELIMINARY

- Neutrino beam (10.71×10^{20} POT)
 - Contained-vertex ν_μ
 - MINOS data
 - Best fit
 - No oscillations
 - NC background
 - Cosmic-ray

- Contained-vertex ν_μ
- Non-fiducial muons
- Antineutrino beam (3.36×10^{20} POT)
- Contained-vertex $\bar{\nu}_\mu$

Atmospheric neutrinos (48.67 kton-years)

- ν_μ $E_\nu = 1-3$ GeV
- ν_μ $E_\nu = 3-10$ GeV
- ν_μ $E_\nu = 10-30$ GeV
- ν_μ $P_\mu < 10$ GeV
- ν_μ $P_\mu > 10$ GeV

- $\bar{\nu}_\mu$ $E_\nu = 1-3$ GeV
- $\bar{\nu}_\mu$ $E_\nu = 3-10$ GeV
- $\bar{\nu}_\mu$ $E_\nu = 10-30$ GeV
- $\bar{\nu}_\mu$ $P_\mu < 10$ GeV
- $\bar{\nu}_\mu$ $P_\mu > 10$ GeV

K. Lang, U. of Texas at Austin, Old Generation MINOS, NNN, APC Paris, Nov 4-6, 2014
MINOS combined analysis results

Disappearance and appearance, beam and atmospheric data

Normal H.:
\[|\Delta m_{32}^2| = [2.28 - 2.46] \times 10^{-3} \text{eV}^2 \quad (68\% \text{C.L.}) \]
\[\sin^2 \theta_{23} = 0.35 - 0.65 \quad (90\% \text{C.L.}) \]

Inverted H.:
\[|\Delta m_{32}^2| = [2.32 - 2.53] \times 10^{-3} \text{eV}^2 \quad (68\% \text{C.L.}) \]
\[\sin^2 \theta_{23} = 0.34 - 0.67 \quad (90\% \text{C.L.}) \]

Sterile neutrinos signatures in MINOS

Effect in **both** MINOS detectors

◊ **Small** $\Delta m_{43}^2 (>\Delta m_{32}^2) \ (10^{-3} - 10^{-1} \text{ eV}^2)$
 - **Far Detector**: additional oscillations above 3-flavour oscillation maximum
 - **Near Detector**: no effect

◊ **Medium** $\Delta m_{43}^2 \ (10^{-1} - 1 \text{ eV}^2)$
 - **Far Detector**: oscillations become rapid and average out, causing a constant depletion (‘counting experiment’)
 - **Near Detector**: no effect

◊ **Large** $\Delta m_{43}^2 \ (1 - 10^2 \text{ eV}^2)$
 - **Far Detector**: constant depletion
 - **Near Detector**: oscillations
Cannot distinguish between ν_e and $\bar{\nu}_e$ events, so we perform a combined analysis using library-event-matching technique:

\[
\delta_{CP} = 0 \quad \text{and} \quad \theta_{23} < \pi / 4
\]

- **Assuming normal hierarchy:**
 \[
 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.051^{+0.038}_{-0.030}
 \]

 \[
 0.01 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.12 \quad (90\% \text{ C.L.})
 \]

- **Assuming inverted hierarchy:**
 \[
 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}
 \]

 \[
 0.03 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.18 \quad (90\% \text{ C.L.})
 \]

Drift: the overall response of the detector versus time, includes:
- changes in the PMT
- electronics
- scintillator
- Decreased by ~10% since 2005