DeeMe
— Yet another experiment to search for muon to electron conversion

Masaharu Aoki, on behalf of DeeMe Collaboration
Osaka University
The 2017 Tamura Symposium — Lepton and Baryon Symmetry,
May 8–9, 2017, U. of Texas at Austin
Charged Lepton Flavor Violation

• Charged Lepton Flavor Violation (CLFV)
 - Forbidden in the Standard Model of particle physics.
 - $\mu^- + A \rightarrow e^- + A$, $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\tau \rightarrow e(\mu)\gamma$, $\tau \rightarrow e(\mu)h$...

• Neutron Oscillation may induce the effective CLFV, but it is very small due to the combination of GIM-like mechanism and smallness of the neutrino masses.

$B(\mu \rightarrow e\gamma) = \frac{3\alpha}{32\pi} \sum_i \left| U_{\mu i} U_{e i}^* \frac{m_{\nu i}^2}{M_W^2} \right|^2 \approx 10^{-6} \left(\frac{m_\nu}{10^{-2} \text{eV}} \right)^4$

• CLFV →
 Clear evidence of the physics beyond the Standard Model with neutrino-oscillation extension.
μ–e Conversion in Nuclear Field

- **Muon Capture (MC)**
 \[\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1) \]

- **Muon Decay in Orbit (DIO)**
 - MC:DIO = 1:1000(H), 2:1(Si), 13:1(Cu)
 - \(\tau(\text{free } \mu^-) = 2.2 \mu s \)
 - \(\tau(\mu^-;\text{Si}) = 0.76 \mu s \)

- **Charged Lepton Flavor Violation (CLFV)**
 \[\mu^- + (A, Z) \rightarrow e^- + (A, Z) \]

Clear evidence of the new physics
\[\mathcal{L} = \frac{m_\mu}{(\kappa + 1)\Lambda^2}\bar{e}\sigma^{\mu\nu}F_{\mu\nu}\mu + \frac{\kappa}{(1 + \kappa)\Lambda^2 F}\bar{e}\mu(\bar{q}q + \bar{e}e) \]

\[[\mu^- + A \rightarrow e^- + A] \text{ vs. } [\mu^+ \rightarrow e^+ + \gamma] \]

- SUSY-GUT, SUSY-seesaw
- Higgs mediated processes
- Doubly Charged Higgs Boson (LRS etc.)
- Little Higgs Models
- Randall-Sundrum Models
- SUSY with R-parity Violation
- Leptquarks
- Heavy Z'
- Multi-Higgs Models

graph showing photonic and non-photonic categories with different models and constraints.
Principle of Measurement

- Process: $\mu^- + (A,Z) \rightarrow e^- + (A,Z)$
 - A single mono-energetic electron
 - 105 MeV
 - Delayed: $\sim 1\mu S$
 - No accidental backgrounds
 - Physics backgrounds
 - Muon Decay in Orbit (DIO)
 - $E_e > 102.5$ MeV (BR: 10^{-14})
 - $E_e > 103.5$ MeV (BR: 10^{-16})
 - Beam Pion Capture
 - $\pi^- + (A,Z) \rightarrow (A,Z-1)^* \rightarrow \gamma + (A,Z-1)$
 - $\gamma \rightarrow e^+ e^-$
 - Prompt timing

Recent Upper Limits
- SINDRUM-II: $BR[\mu^- + Au \rightarrow e^- + Au] < 7 \times 10^{-13}$
- SINDRUM-II: $BR[\mu^- + Ti \rightarrow e^- + Ti] < 4.3 \times 10^{-12}$
- TRIUMF: $BR[\mu^- + Ti \rightarrow e^- + Ti] < 4.6 \times 10^{-12}$
Light-weight μ-e Conversion Exp.?
MELC, MECO, COMET, Mu2e

- μ-e conversion electron may directly come from the production target.
- Analogy to the surface muon.
Measurement of Muonic Atom Yield @ 2009

- $p_e > 40$ MeV/c: Dominated by e^- from μ^- decay.
- $p_e \sim 50$ MeV/c: Michel Edge
- $p_e < 30$ MeV/c: Dominated by e^- from e^+ scattering where the e^+ is coming from μ^+ Michel decay.
- $\to \mu^-$ stopping rate = $5\sim6 \times 10^9$ /sec/MW in a 1st fixed Target.
- Good agreement with Geant4/G4Beamline.
- 10^{10}/sec/MW for SiC Rotating-Target
DeeMe

• Process: $\mu^{-}+(A,Z) \rightarrow e^{-}+(A,Z)$
 – A single mono-energetic electron
 • 105 MeV
 • Delayed: $\sim 1\mu S$
 • No accidental backgrounds
 • Physics backgrounds
 – Muon Decay in Orbit (DIO)
 • $E_e > 102.5$ MeV (BR: 10^{-14})
 • $E_e > 103.5$ MeV (BR: 10^{-16})
 – Beam Pion Capture
 • $\pi^{-}+(A,Z) \rightarrow (A,Z-1)^* \rightarrow \gamma+(A,Z-1)$
 • Prompt timing
 • Low Energy main part: suppressed by the beamline.
 • High Energy tail: Magnet Spectrometer ($\Delta p < 0.5\%$)
 • Main pulse burst: State-of-the-art MWPC that becomes operational quickly after a burst.
 • Delayed-protons: Suppressed owing to the extremely small after-protons from RCS -- $R_{DP}<10^{-17}$.
J-PARC MLF

- **LINAC**
 - H⁺, 400 MeV, 50 mA
 - 50 Hz

- **RCS**
 - 3 GeV, 333 μA, 1MW: High Power
 - 25 Hz, Fast Extraction: High Purity
 - Material and Life-science Facility (MLF)

- **MR**
 - 30 GeV, 15 μA
 - Fast and Slow EX

MUSE: IMSS/Muon Facility
Earthquake

300 kW

Accident at Hadron Facility

as of December 21, 2016

• ~10 months interruption due to the earthquake

• ~1 month interruption due to the fire in MLF

• Interruption due to troubles of Hg-target

Startup of the user program in Dec. 2008

1 MW eq. pulse

DeeMe Collaboration

M. Aoki(1), D. Bryman(2), Y. Furuya(3), Y. Irie (4), S. Ito(1), N. Kawamura(5), M. Kinsho(6), H. Kobayashi(4), S. Makimura(5), H. Matsumoto(4), S. Meigo (6), T. Mibe(7), S. Mihara(7), Y. Miyake(5), D. Nagao(1), Y. Nakatsugawa(5), H. Natori(7), H. Nishiguchi(7), T. Numao(8), C. Ohomori(4), S. Ritt(10), P.K. Saha(6), N. Saito(7), Y. Seiya(3), K. Shimizu(3), K. Shimomura(5), P. Strasser(5), Y. Takezaki(3), N. Teshima(3), N.D. Thong (1), N.M. Truong (1), K. Yamamoto(6), K. Yamamoto(3), M. Yoshii(4), H. Yoshinaka(3), K. Yoshimura(9)

(1) Osaka University, (2) UBC, (3) Osaka City University, (4) KEK Accelerator, (5) KEK MUSE, (6) JAEA, (7) KEK IPNS, (8) TRIUMF, (9) Okayama University, (10) PSI
DeeMe Project

- High-Power High-Purity Pulsed Proton from J-PARC RCS
- Start with Graphite Target
 - Aiming to upgrade to a SiC Target
- Large-Acceptance Beam line (H-Line)
- State-of-the-Art HV-Switching MWPC
- Single Event Sensitivity
 - 1×10^{-13} (Graphite, 2×10^7 sec)
 - 2×10^{-14} (SiC), 5×10^{-15} (8×10^7 sec)
- Proposed to KEK/IMSS in 2010
- Stage-2 Approved from Muon PAC IMSS
- Grant-in-Aid for detector construction
 - completed
- H-Line under construction
 - upstream-half completed
 - beamline shield completed
 - downstream at 2018 summer
- Aiming to start in 2018.
Sensitivity and Backgrounds

• Signal Sensitivity (SiC)
 – S.E.S.: 2×10^{-14} (1 MW, 2×10^7 sec)

• Backgrounds
 – $R_{AP} < 10^{-18}$
 – Detector live-time Duty = 1/20000
 that suppresses cosmic-ray BG
 – no anti-protons ($E_p = 3$ GeV < 5.6 GeV)

<table>
<thead>
<tr>
<th>Background</th>
<th>Value (90%CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIO BG</td>
<td>0.09</td>
</tr>
<tr>
<td>Delayed-Proton BG</td>
<td>< 0.04</td>
</tr>
<tr>
<td>Cosmic-Muon Induced</td>
<td><0.018</td>
</tr>
<tr>
<td>Cosmic-Muon Induced Muon</td>
<td><0.001</td>
</tr>
<tr>
<td>Radiative Muon Capture BG</td>
<td><0.0009</td>
</tr>
</tbody>
</table>

• If we could extend the running-time up to 8×10^7 sec
 – Standard Cut: S.E.S. = 0.5×10^{-14} ($N_{BG} < 0.64$)
 – Tighter Cut: S.E.S. = 0.6×10^{-14} ($N_{BG} < 0.17$)
 N_{BG} could be much less with improved BLM system.
In-situ Monitoring of Backgrounds

• Momentum Domain
 – Moderate Δp of H-line makes it possible to monitor backgrounds in-situ:
 • DIO ($p < 102.5$ MeV/c)
 • Beam Backgrounds ($p > 105.6$ MeV/c)
 – Number-of-muon Calibration by using DIO.

• Time Domain
 – Monitor Off-Timing Protons
 • Beam-Loss Monitor @ RCS
 • Spectrometer Activities
 – Cosmic-Ray Background
 • Duty-factor $1/20000$
Delayed-Protons from RCS

- RCS has a very large aperture (to reduce the beam loss).
 - Vacuum Duct = 486\pi \text{ mm.mrad} \quad \text{(Collimator: 350}\pi \text{ mm.mrad)}
 - Transport to MLF = 324\pi \text{ mm.mrad}
 - Kick Angle = 17 \text{ mrad} \rightarrow 2000\pi \text{ mm.mrad}
- Fast Extraction --- No residual protons in a ring.
- High-Purity High-Power Pulsed Proton Beam

\[R_{DP} < 8 \times 10^{-19} \quad \Leftrightarrow \quad N_{DP} < 0.04 \]
Beamline: H-line

- Concept: Jaap Doornbos (TRIUMF)
 - Leader: Naritoshi Kawamura (KEK)
 - Multiple purpose: DeeMe + g-2 + muon-HFS
 - Large Acceptance: > 110 msr
 - Large Momentum Acceptance: BG monitor
 - DIO backgrounds (p < 102.5 MeV/c)
 - Prompt backgrounds (p > 105.0 MeV/c)
- Upstream; already installed in the summer of 2012.
- Downstream; Engineering Design finished;
 - radiation shielding Installation completed;
 - is going to be installed in 2018 summer.
H-line: Construction of Radiation Shields @ 2016 summer
Spectrometer

• Orthodox Dipole Spectrometer
 – $\Delta p < 0.5$ MeV/c
 – **A magnet from TRIUMF**

• Prompt Burst: $\sim 10^8$/200-ns
 – Need to reduce the drop of gas-gain coming from space-charge effect of ions.
Potential-Wire Voltage Switching MWPC

Anode wire: 1150V
Potential wire: 0V
Expected gas gain: $\sim 10^4$

Anode wire: 1150V
Potential wire: 1000V
Expected gas gain: ~ 7

Cathode Plane (0V)
Anode Wire (1150V)
Potential Wire
Electric field contour
Cathode Plane

Electric field Profile

JPS Meeting 28/March/2014 @ Tokai University Shonan Campus

PTEP 2017 (2017) 023C01: https://doi.org/10.1093/ptep/ptw193
MWPC Development

Prototype 1 @2012

Prototype 2 @2014

Preamps @ 2015

Production @ 2015

Raw Waveform

Baseline-subtracted Waveform

Prompt Burst
A single-stage PZC right after the 1st transistor to cancel 1/t tail that comes from slow ion movement.
Lowe-cost FADC

- Originally developed for J-PARC/E36 by Y. Igarashi
- Firmware completely replaced by N.M.Truong
- Lossless data reduction
- $70 / channel.
Beam Tests

Now, it is stable and operational w/o any breakdowns. Confirmed a good gas gain.
Summary

• There is a competitive merit of physics in searching for μ-e conversion at sensitivity of 10^{-14} in timely manner.

• It is important to maximize the potential of major discovery at J-PARC.

• DeeMe, yet another mu-e conversion search with totally different method from COMET and Mu2e, creates harmonious diversity for J-PARC.

• DeeMe has already acquired **Stage-2 Approval from muon-PAC of KEK/IMSS**.

• Construction of detector system has completed with Grant-in-Aid for Scientific Research of Japan (Basic Science S, 2012–2016).

• It is necessary to build a large-acceptance beamline (H-line). The H-line can be used for other experiments, such as g-2.

• We can start the physics measurement with a Graphite target. The development of SiC target will be continued and installed in timely manner for the ultimate sensitivity.

• We are hoping to start soon after the completion of the beamline construction (current estimate: 2018). No beam-time conflicts with T2K, KOTO or whatever the physics programs with the main ring of J-PARC.
End of Slides